
1. Introduction
The vertical distribution of clouds and their representation in numerical weather and climate modeling are impor-
tant for modeling and forecasting the radiative budget (e.g., Chen et al., 2000; Liang & Wang, 1997; Morcrette & 
Fouquart, 1986; Morcrette & Jakob, 2000; Slingo & Slingo, 1991; Stubenrauch et al., 1997; Wu & Liang, 2005). 
Models that do not resolve clouds (i.e., models with horizontal grid spacing larger than approximately 100 m) 
dictate that assumptions are required to represent the vertical distribution of clouds within the model. The verti-
cal distribution of subgrid-scale clouds is described in weather and climate models using cloud vertical overlap 
methods. Cloud vertical overlap methods describe how cloud layers are vertically aligned, which is commonly 
described as overlapping randomly or maximally as well as combinations of maximum and random overlap 
(e.g., maximum-random) (e.g., Chou et al., 1998; Geleyn & Hollingsworth, 1979; Hogan & Illingworth, 2000; 
Tian & Curry, 1989). When cloud layers are maximally overlapped such that the total cloud fraction is mini-
mized, this is referred to as “maximum overlap.” In contrast, randomly overlapping cloud layers are referred 
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to as “random overlap.” Minimally overlapping cloud layers that lead to maximizing the total cloud fraction is 
referred to as “minimum overlap.” In addition, the combination of maximum and random overlap referred to as 
“maximum-random overlap” is another method where vertically continuous clouds are considered to be maxi-
mally overlapped and cloud layers separated by clear-sky are considered to be randomly overlapped. Another 
component of subgrid-scale cloud variability is the horizontal variability of cloud condensate, which are also 
described by overlap methods (e.g., Oreopoulos et al., 2012; Pincus et al., 2005; Räisänen et al., 2004).

Observations afford the opportunity to investigate and develop assumptions for cloud vertical overlap methods. 
Observations such as vertical profiles of clouds from ground-based radars (e.g., Hogan & Illingworth, 2000; Li 
et al., 2019; Mace & Benson-Troth, 2002; Naud et al., 2008; Oreopoulos & Norris, 2011) and satellite-based radars 
(e.g., Oreopoulos et al., 2012; Tian & Curry, 1989) have been used to characterize cloud vertical distribution. By 
utilizing cloud radar observations, Hogan and Illingworth (2000) found that observations of vertically continuous 
clouds followed an exponential relationship such that the cloud layers' overlap transitioned from maximum to random 
overlap with increasing cloud layer separation. They also found that vertically noncontinuous clouds exhibited random 
overlap. The combination of these two observed phenomena is referred to as exponential-random overlap. The expo-
nential equation that describes the cloud vertical overlap distribution includes a characteristic decorrelation length 
scale that describes the e-folding distance for cloud layer separation where the overlap parameter is 1/e of maximum 
overlap. Shonk and Hogan  (2010) explored the effect of the exponential-random overlap on the global radiative 
budget and found that the shortwave (SW) cloud radiative effect was changed by ∼−4 W m −2 compared to assuming 
maximum-random overlap, which highlights the importance of capturing cloud vertical overlap within models.

The high-quality ground-based measurements operated by the Atmospheric Radiation Measurement Program 
(ARM) sites (Ackerman & Stokes, 2003; Turner & Ellingson, 2016) provide the opportunity to investigate cloud 
vertical overlap characteristics from long-term cloud radar and lidar measurements. Previous studies have lever-
aged the capabilities of the ARM sites to investigate cloud vertical overlap characteristics including Mace and 
Benson-Troth (2002), Naud et al. (2008), Oreopoulos and Norris (2011), and Li et al. (2019). In this study, we 
expand on these studies by investigating the decorrelation length scale at the ARM Southern Great Plains (SGP) 
site (Sisterson et al., 2016) from nearly 25 years of observations as well as extending the sites considered to include 
all long-term and short-term ARM deployments that had cloud radar and lidars and the associated data products. 
In addition to extending the cloud vertical overlap analysis to new locations, this study will also consider the 
cloud type classifications from Lim et al. (2019) to help inform how the decorrelation length scale varies by cloud 
type, where cloud type is otherwise referred to as cloud regime. By considering cloud-regime-specific decorre-
lation length scales, this can help inform if decorrelation length scale specification by cloud type in weather and 
climate forecasting provides improvement in modeling cloud vertical distribution as well as radiative fluxes.

Section  2 describes the cloud observations from radar and lidar. Section  3 details the methods employed to 
derive cloud vertical overlap characteristics. Section 4 explores the impact of the decorrelation length scale on 
the surface radiative budget. Section 5 presents the decorrelation length scale results for the SGP site and other 
ARM sites considered for all cloud types and separated into contributions from different cloud types. Section 6 
summarizes and presents concluding remarks.

2. Data
The ARM Cloud Type (CLDTYPE) value-added product (VAP) (Flynn et al., 2017; Lim et al., 2019) is utilized to 
derive cloud vertical overlap characteristics. The CLDTYPE data product provides vertical profiles of clouds and 
cloud type classification based on radar and lidar retrievals. The retrieval algorithm ingests the Active Remote 
Sensing of Cloud Layers (ARSCL) data product (Clothiaux et al., 2001; Kollias et al., 2016) from the millimeter 
cloud radar (MMCR) and more recently the Ka-band ARM Zenith radar (KAZR) with additional information 
from the micropulse lidar (MPL). The cloud boundaries from ARSCL are then categorized into cloud types based 
on cloud base height, top height, and geometric depth. The seven different cloud types include (a) low clouds, (b) 
congestus, (c) deep convection, (d) altocumulus, (e) altostratus, (f) cirrostratus/anvil, and (g) cirrus. The cloud 
base height, top height, and geometric depth criteria for each cloud type at the SGP site are provided in Table 1 
of Lim et al. (2019). The temporal resolution is 1 min for the CLDTYPE data product.

In this study, the primary analysis will focus on the CLDTYPE data product at the ARM SGP site located in 
Lamont, Oklahoma (36.61°N, 97.49°W). The time period is nearly 25 years from November 1996 to Septem-
ber 2021. Beyond the SGP site, the CLDTYPE data product is considered at four additional sites including the 
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ARM Tropical Western Pacific (TWP; Long et al., 2016) long-term sites (i.e., TWPC1, TWPC2, TWPC3) and 
Cordoba, Argentina (COR). The COR site was a part of the Cloud, Aerosol, and Complex Terrain Interactions 
(CACTI) field campaign (Varble et al., 2021). See Figure 1 for a map of the sites and Table 1 for the associated 
time period at each site.

The cloud boundaries from the ARSCL data product are also considered for sites where the CLDTYPE data 
product is not available. The site information for sites that consider the ARSCL data product is also provided in 
Figure 1 and Table 1. The ARSCL data product is considered from the KAZR and W-Band ARM Cloud Radar 
(WACR) where available. The analysis of the ARSCL data products is the same as that of the CLDTYPE data 
product except it only considers the cloud boundaries.

Figure 1. Map of all Atmospheric Radiation Measurement (ARM) sites considered. The location descriptions for each site 
are provided in Table 1.

Table 1 
The Site Abbreviation (Left), Location Description (Left Middle), and Time Periods (Right Middle) Considered and the Resulting Decorrelation Length Scale (in km) 
With 1-σ Errors From Figure 8 (Right)

Site abbreviation Location Time period Decorrelation length scale (km)

SGP Lamont, Oklahoma, United States 8 November 1996 to 29 September 2021 1.84 ± 0.01

COR Cordoba, Argentina 23 September 2018 to 30 April 2019 2.03 ± 0.04

TWPC1 Manus, Papua New Guinea 1 July 1999 to 2 May 2014 2.05 ± 0.01

TWPC2 Nauru Island 1 November 1998 to 13 February 2009 1.77 ± 0.01

TWPC3 Darwin, Australia 1 January 2003 to 2 May 2014 2.29 ± 0.01

ANX Andenes, Norway 1 December 2019 to 31 May 2020 1.38 ± 0.14

ASI Ascension Island, South Atlantic 12 July 2016 to 30 September 2017 1.39 ± 0.06

AWR McMurdo Station, Antarctica 18 November 2015 to 2 January 2017 1.12 ± 0.53

ENA Azores, Eastern North Atlantic 17 July 2015 to 30 September 2021 1.67 ± 0.01

GRW Azores, Eastern North Atlantic 6 June 2009 to 31 December 2010 1.80 ± 0.01

GAN Gan Island, Maldives 9 October 2011 to 7 February 2012 1.43 ± 0.02

MOS Ship in Arctic Ocean, MOSAiC Field Campaign 11 October 2019 to 1 October 2020 1.03 ± 0.15

NSA North Slope of Alaska 11 November 2011 to 30 September 2021 1.24 ± 0.02

OLI Oliktok Point, Alaska, United States 1 October 2015 to 15 June 2021 1.38 ± 0.01

TMP Hyytiälä, Finland 1 February 2014 to 13 September 2014 1.18 ± 0.02

FKB Black Forest, Germany 29 March 2007 to 1 January 2008 1.53 ± 0.01

MAO Manacapuru, Brazil 18 February 2014 to 30 November 2015 3.06 ± 0.01

MAR Ship in Southern Ocean, MARCUS field campaign 29 October 2017 to 24 March 2018 1.17 ± 0.02

PVC Cape Cod, United States 12 October 2012 to 14 June 2013 1.89 ± 0.02
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In addition to the CLDTYPE cloud classification, shallow cumulus identified time periods are also considered at 
the SGP site from the Shallow Cumulus (SHALLOWCUMULUS) VAP (Flynn et al., 2018). The SHALLOW-
CUMULUS data product utilizes the CLDTYPE data product as well as cloud occurrence and cloud fraction 
information from the ceilometer and the total sky imager to identify shallow cumulus time periods.

3. Cloud Vertical Overlap Characteristics From Observations Methods
The cloud observations are analyzed to derive cloud vertical overlap characteristics. We follow the methods 
described in Hogan and Illingworth (2000) as well as similar studies (e.g., Mace & Benson-Troth, 2002; Naud 
et al., 2008). The one exception in this present study is the upper limit considered for the layer cloud fraction 
(CF). Hogan and Illingworth (2000) consider partial cloudy layers where the layer CF (in both layers 1 and 2) is 
between 0 and 1 (i.e., 0 < CF1, CF2 < 1), while only layer CFs up to 0.5 are considered in this study following 
recent studies to limit data truncation impacts on the results (e.g., Li et al., 2019; Tompkins & Di Giuseppe, 2015). 
The upper limit for the layer CF of 0.5 also excludes clouds associated with synoptic-scale and deep convective 
systems, which allows the analysis to focus on clouds that are more sensitive to the decorrelation length scale.

The cloud boundaries are converted into a cloud mask considering a temporal resolution of 1 hr and vertical 
resolution of 360 m. Profiles are only considered for nonprecipitating times when both the radar and lidar are 
available. In addition, only cloud boundaries that pass quality control tests are considered (i.e., qc flag = 0). If 
any profile in a 1 hr period do not meet these criteria, the cloud vertical overlap characteristics are not calculated.

For every 1 hr period, each pair of partial cloudy layers is considered (excluding comparing a layer to itself). The 
true CF (CFtrue) is determined by considering the CF of the two layers combined. The maximum overlap (CFmax), 
minimum overlap (CFmin), and random overlap (CFrand) CFs are calculated for each partial cloudy layer pair:

CFmax = max(CF1,CF2) (1)

CFmin = min(1,CF1 + CF2) (2)

CFrand = CF1 + CF2 − CF1 ∗ CF2 (3)

where CF1 and CF2 are CFs in the two layers. The overlap parameter, α, is also calculated for each partial cloudy 
layer pair. The overlap parameter relates the CFtrue to CFmax and CFrand, such that:

CFtrue = 𝛼𝛼CFmax + (1 − 𝛼𝛼)CFrand (4)

where when α equals 0, the overlap corresponds to random overlap and when α equals 1, the overlap corresponds 
to maximum overlap. When α is negative, the overlap corresponds to minimum overlap.

The vertical overlap characteristics are binned by vertical layer separation (i.e., Δz = z2 − z1). The analysis is 
further separated into two categories: (a) vertically continuous clouds, and (b) vertically noncontinuous clouds. 
Cloud layer pairs are considered vertically continuous clouds if every layer in-between the two layers compared 
are cloudy (i.e., CF > 0). Vertically noncontinuous cloud is considered if any layer is clear-sky in-between the 
two layers compared (i.e., CF = 0). For vertically continuous clouds, Hogan and Illingworth (2000) proposed an 
exponential relationship that relates α and Δz with a characteristic decorrelation length scale Lα:

𝛼𝛼 = 𝑒𝑒𝑒𝑒𝑒𝑒

(

−
Δ𝑧𝑧

𝐿𝐿𝛼𝛼

)

 (5)

where the decorrelation length scale modulates the transition from maximum to random overlap with increasing 
layer separation. Observations of α and Δz are fit to Equation 5 to identify the decorrelation length scale that best 
fits observations. The fit of α and Δz to Equation 5 considers all cloud layer pairs in Sections 5.1.1 and 5.2 and for 
selected cloud type pairs in Sections 5.1.2, 5.1.3, and 5.2.1. Note that in general there are more samples at small 
layer separations and, therefore, the fit to Equation 5 is weighted toward smaller layer separations.

4. Decorrelation Length Scale Impact on the Surface Radiative Budget
To understand the implication of the decorrelation length scale on surface radiative fluxes, idealized layer CF and 
layer liquid water path (LWP) profiles are generated and considered (Figure 2a) as input into a radiative transfer 
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model and the decorrelation length scale is varied. The layer CF profile considered has a maximum CF of 0.5 at 
1 km and CFs greater than 0 from 0.4 to 1.6 km. The layer LWP profile considered is similar to the CF profile 
with a maximum layer LWP of 30 g m −2 at 1 km with layer LWPs greater than 0 from 0.4 to 1.6 km with a column 
LWP of 59.5 g m −2. The idealized cloud profiles are generated to represent a low cloud situation with a column 
LWP typical at the SGP site.

Cloud fields are generated with the layer CF and layer LWP profiles following the exponential-random overlap 
method with decorrelation length scale values ranging from 0.1 to 5 km every 100 m considering 200 subcol-
umns. The stochastic cloud generator subroutine in Rapid Radiative Transfer Model for General Circulation 
Models (RRTMG) (Iacono et al., 2008) is utilized to generate the cloud fields considered here. Examples of the 
cloud fields for a decorrelation length scale of 0.1 and 5 km are shown in Figures 2c & 2d, respectively. The cloud 
fields are then input into the rapid radiative transfer model (RRTM) (Iacono et al., 2000; Mlawer et al., 1997). The 
radiative flux outputs are averaged following the Monte Carlo Independent Column Approximation (MCICA) 
(e.g., Pincus et al., 2003). Here the layer LWP profile is considered as input instead of the layer liquid water 
content (LWC) profile as the layer LWP is the input option considered for RRTM. Layer LWP is related to layer 
LWC by vertically integrating LWC across the depth of each layer.

In addition to the cloud field, other inputs considered in RRTM come from a high-resolution rapid refresh 
(HRRR) (Dowell et al., 2022) 1-hr forecast on 10 October 2019 initialized at 20 UTC at the SGP site. The solar 
zenith angle is 57.8°, which corresponds to an incoming top-of-atmosphere (TOA) solar flux of 732.3 W m −2. 
The temperature and water vapor mixing ratio profiles are shown in the inset in Figure 2a.

The resultant surface SW and longwave (LW) downwelling fluxes are shown in Figure  2b. The surface SW 
downwelling fluxes (SWdown) range from 267.7 W m −2 for a decorrelation length scale of 0.1 km to 330.0 W m −2 

Figure 2. (a) Input cloud fraction (CF) and layer cloud liquid water path (LWP [g m −2]) vertical profiles and (b) resultant 
surface downwelling fluxes (𝐴𝐴 𝐴𝐴

↓

𝑠𝑠𝑠𝑠𝑠𝑠
 [W m −2]) for shortwave (SW; black) and longwave (LW; red) and the total cloud fraction 

(TCF; blue) for the exponential-random cloud vertical overlap method with varying decorrelation length scale (Lα; km). Layer 
cloud LWP vertical profiles for each subcolumn ordered by increasing column LWP are shown for a decorrelation length 
scale of (c) 0.1 km, and (d) 5 km. (a) The temperature [K] (blue) and water vapor mixing ratio [g kg −1] (light blue) profiles 
considered are shown in the inset.
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for a decorrelation length scale of 5 km. The SWdown increases with increasing decorrelation length scale due to 
the number of clear-sky subcolumns increasing as the overall cloud field moves more toward maximum overlap 
(e.g., Figure 2d compared to Figure 2c). The total CF (i.e., number of cloudy subcolumns divided by the total 
number of subcolumns) decreases from 0.90 to 0.54 when the decorrelation length scale changes from 0.1 to 5 km 
(Figure 2b). Nearly half of the 62.2 W m −2 change in SWdown occurs when the decorrelation length scale changes 
from 0.1 to 1 km (27.6 W m −2) which corresponds to a decrease in the total CF of 0.90 to 0.67.

The surface LW downwelling fluxes (LWdown) range from 341.8 W m −2 for a decorrelation length scale of 0.1 km 
to 319.3 W m −2 for a decorrelation length scale of 5 km. The LWdown decreases with increasing decorrelation 
length scale for the same reason stated above for SWdown changes: a decrease in the total CF with increasing 
decorrelation length scale decreases LWdown. The relative change in LWdown for a decorrelation length scale of 0.1 
to 1 km compared to the change from 0.1 to 5 km is even larger (63.8%) than for SWdown (44.3%). Overall, the 
changes in the surface radiative budget are on the order of ∼60 W m −2 for SWdown and ∼20 W m −2 in LWdown for 
the same CF and LWP profiles. This highlights the importance of investigating the observed decorrelation length 
scale, which is the focus of this study, in order to use correct overlap statistics in models.

5. Results
5.1. SGP Vertical Overlap Characteristics

The mean CFtrue, CFmax, CFrand, and CFmin for each layer separation are shown in Figure 3 for the SGP site. For 
vertically continuous clouds (Figure 3a), the CFtrue is similar to CFmax at small layer separations before starting 
to transition closer to similar values as CFrand as the layer separation increases beyond 360 m and reaching simi-
lar values as CFrand near 4 km. For vertically noncontinuous clouds (Figure 3b), CFtrue is similar to CFrand for 
small and large layer separations. These results are comparable to other cloud vertical overlap studies based on 
observations at the SGP site (e.g., Li et al., 2019; Mace & Benson-Troth, 2002; Naud et al., 2008) as well as other 
cloud vertical overlap studies at other locations (e.g., Hogan & Illingworth, 2000).

The mean α binned by layer separation is shown in Figure 4 for the SGP site. For vertically continuous clouds 
(Figure 4a), the mean α is 0.91 for the smallest layer separation (i.e., 360 m). As the layer separation increases, 
mean α values decrease and approach values of ∼0.10 near 4 km. The mean α values align with the mean CF 

Figure 3. The mean cloud fractions (CF) for each layer separation (in km) for (a) vertically continuous clouds, and (b) 
vertically noncontinuous clouds at the Atmospheric Radiation Measurement Program Southern Great Plains site. The random 
(CFrand; red), maximum (CFmax; dark blue), minimum (CFmin; light blue), and true (CFtrue; black) cloud fractions are shown.
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values (Figure 3a) such that α is near 1 (i.e., maximum overlap, CFtrue ∼ CFmax) at small layer separations and 
decreases toward 0 (i.e., random overlap, CFtrue ∼ CFrand) at larger layer separations. For vertically noncontinuous 
clouds (Figure 4b), the mean α is 0.05 for the smallest layer separation (i.e., 720 m). Mean α values decrease 
slightly as layer separation increases with values near zero around 5 km. These mean α also align with the mean 
CF values (Figure 3b) as α is near 0 regardless of layer separation (i.e., random overlap, CFtrue ∼ CFrand).

The α observations at the SGP site are fit to Equation 5 to obtain a decorrelation length scale. For the SGP site, 
the decorrelation length scale that fits the observations is 1.84 km. Mace and Benson-Troth (2002) found a decor-
relation length scale of 3.94 km and Naud et al. (2008) found a decorrelation length scale of 1.4 km. While the 
values presented in this study are comparable to those of previous studies, the values are different. We attempt to 
compare our results to the previous results by considering our methodology but for layer CFs < 1 (instead of layer 
CFs < 0.5) and for the same time periods to better match the methods. For Naud et al. (2008), their time period 
considered is September 2002 to August 2004 for winter months only (i.e., November-March). Our decorrelation 
length scale is found to be 1.30 km for the Naud et al. (2008) time period and layer CF < 1, which is within 0.1 km 
of their value. For Mace and Benson-Troth (2002), their time period considered is March 1997 to December 2000 
and our decorrelation length scale is found to be 1.88 km. In addition to different data products considered, Naud 
et al. (2008) found that their decorrelation length scale values differed from Mace and Benson-Troth (2002) due 
to differences in removal of precipitation times and cloud layer height maximum. This may explain the majority 
of the differences here as both effects would increase the decorrelation length scale. Overall, differences still 
exist between this study and the previous studies that preclude direct comparison due to differences in data 
products utilized and methodologies. In addition, the observations in this study benefit from improvements in the 
cloud radar systems (i.e., KAZR compared to the MMCR) as well as retrieval algorithm maturity (i.e., improved 
ARSCL, development of CLDTYPE).

The sensitivity of the decorrelation length scale to the CF threshold is assessed by considering various cloud 
layer CF thresholds. Previous studies considered cloud layer CFs less than 1 (e.g., Hogan & Illingworth, 2000). 
The decorrelation length scale at the SGP site that fits the observations when considering cloud layer CFs less 
than one is 1.50 km. Other CF thresholds tested include CF < 0.4 and CF < 0.6, which resulted in decorrelation 
length scales of 1.90 and 1.77 km, respectively. The decorrelation length scale decreases when increasing the CF 
threshold as more discontinuous clouds exhibiting minimum overlap appear in the analysis as noted in Tompkins 

Figure 4. The mean overlap parameter (α) for each layer separation (in km) for (a) vertically continuous clouds, and (b) 
vertically noncontinuous clouds at the Atmospheric Radiation Measurement Program Southern Great Plains site (black). 
The exponential-random ⍺ values corresponding to Equation 5 with a decorrelation length scale of 1.84 km that fits the 
observations are shown in red. The standard error of the mean ⍺ is denoted by the black horizontal lines.
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and Di Giuseppe (2015). The sensitivity of the decorrelation length scale to the vertical and temporal resolution 
is also considered. The decorrelation length scale for a vertical resolution of 100 and 500 m is 1.73 and 1.93 km, 
respectively. The decorrelation length scale for a temporal resolution of 30 min and 2 hr is 1.98 and 1.76 km, 
respectively. Except for considering a CF < 1, the sensitivity of the decorrelation length scale to the methods is 
within ∼0.10–0.15 km, which corresponds to differences on the order of a few W m −2 in the SWdown (Figure 2b).

The α observations at the SGP site are separated by season and fit to Equation 5 to obtain a seasonal decorre-
lation length scale. The decorrelation length scale that fits the seasonal observations are: 1.57 km for winter 
(December–February; DJF), 1.72 km for spring (March–May; MAM), 2.16 km for summer (June–August; JJA), 
and 1.90 km for fall (September–November; SON). The seasonal cycle of the decorrelation length scale at the 
SGP site is such that the decorrelation length scale value is largest in the summer and smallest in the winter, 
which has also been noted in Mace and Benson-Troth (2002), Oreopoulos and Norris (2011), and Li et al. (2019). 
Li et al. (2019) suggests that the decorrelation length scale seasonal cycle is due to the relative strength of the 
wind shear and instability. Weaker wind shear and a more unstable atmosphere correspond to maximum cloud 
vertical overlap and therefore a larger decorrelation length scale is observed in the summer compared to the 
winter. The seasonal cycle of the mean α at various layer separations (i.e., 1, 2, 4, and 6 km) are compared to 
those in Mace and Benson-Troth (2002) (see their Figure 7) (not shown). The seasonal cycle is similar to those 
in Mace and Benson-Troth (2002), except that the mean α for a given season and layer separation is smaller in 
magnitude  in this study, likely due to the differences between the studies mentioned above.

5.1.1. SGP Decorrelation Length Scales by Cloud Types

The previous section considered vertical overlap observations regardless of cloud type. In this section, α values 
are separated by cloud type classification for vertically continuous clouds. The methods are the same as described 
in Section 3 with additional information for the cloud type classification that is matched to the cloud mask and 
identified for each cloud layer separately based on Lim et al. (2019). Within a temporal resolution of 1 hr, the 
cloud type classification in a given layer can be one (e.g., cirrus) or more than one (e.g., cirrostratus/anvil and 
cirrus). The two cloud layers are analyzed for their overlap properties and then categorized into the associ-
ated  cloud type pair classification (e.g., cirrostratus/anvil and cirrus paired with cirrus). Each cloud layer pair 
is analyzed and then aggregated by cloud type pairs. Note that other cloud types may exist in-between the two 
layers analyzed since the analysis is restricted to vertically continuous clouds. In addition, the layer CF threshold 
of 0.5 limits the cloud type analyzed as frequent cloud type pairs. For example, deep convection clouds often do 
not meet this criterion and, therefore, are not included in a frequent cloud type pair.

The mean α for each layer separation for the 10 most frequent cloud type pairs are shown in Figure 5. The decor-
relation length scale for each cloud type pair is also found following Equation 5. The number of samples for the 10 
most frequent cloud type pairs are provided in Table 2. Overall, the mean α values show similarities but also distinct 
differences across different cloud type pairs. The most frequent cloud type pair is cirrus paired with cirrus, which 
has a decorrelation length scale of 1.36 km. The mean α at the smallest layer separation for cirrus paired to cirrus 
has a similar value (0.90) as that regardless of cloud type (0.91). This is the case for other cloud type pairs as well, 
for example, cirrostratus/anvil and cirrus paired with cirrostratus/anvil and cirrus. The mean α for cirrus paired with 
cirrus decreases toward 0 (i.e., random overlap) at smaller layer separations than when observations are considered 
regardless of cloud type, which is further indicated by a decorrelation length scale that is smaller than that without 
regard for cloud type (1.84 km, Figure 4a). The decorrelation length scale value for cirrus paired with cirrus may 
be smaller than other cloud type pairs due to subsidence at upper levels or large wind shear (Naud et al., 2008).

The smallest decorrelation length scale by cloud type pair is 0.04 km for cirrostratus/anvil paired with cirrus. 
The small value indicates that the overlap observations for this cloud type pair are closer to random overlap than 
to maximum overlap, even at small layer separations. This is further seen in that the mean α at a layer separation 
of 360 m is 0 and decreases to around −0.15 for larger layer separations. The negative α values indicate that 
the cloud type pair correspond to minimum overlap for layer separations of 720 m and greater. The negative α 
values are not represented by the decorrelation length scale since Equation 5 cannot represent negative values. 
Therefore, the decorrelation length scale is near 0 as a consequence. The minimum overlap observed for the cirro-
stratus/anvil paired with cirrus may be due to large vertical shear of the horizontal wind, which favors minimum 
overlap (Naud et al., 2008).

The largest decorrelation length scale by cloud type pair is 4.58 km for low cloud paired with cirrus. The mean 
α values are centered around 0.2 with layer separations only greater than 3  km. The large layer separations 
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for low cloud paired with cirrus are the result of the cloud type classifica-
tion thresholds as low clouds are only classified at heights below 3.5  km 
and cirrus are only defined at heights above 6.5  km (see Table 1 in Lim 
et al. (2019)). The low cloud paired with cirrus mean α values are less than 
0.5 for all layer separations considered, which suggests that the cloud type 
pair is closer to random overlap than to maximum overlap. Despite the small 
α values, the decorrelation length scale is large due to the large layer separa-
tions as the result of comparing the low and high clouds. Consequently, the 
decorrelation length scale and Equation 5 do not represent the α values well, 
which was also the case for the cirrostratus/anvil paired with cirrus cloud 
type pair. While the low cloud paired with cirrus mean α values are always 
less than 0.5, the mean α values are greater than 0.2 for layer separations from 
∼6 to ∼9 km. These values are also larger than other cloud type pairs (e.g., 
congestus paired with cirrus) that have mean α values closer to 0 for similarly 
large layer separations. This suggests that overlap is not always random at 
large layer separations (e.g., 8 km) for vertically continuous clouds as often 
assumed within models.

Of the 10 most frequent cloud type pairs, 8 cloud type pairs are comprised 
of cirrus clouds in either the lower or upper cloud layer considered. In addi-
tion, half (4) of the cirrus cloud type pairs are combinations of cirrus and 
cirrostratus/anvil, for example, cirrostratus/anvil paired with cirrus cloud type 
pair. Despite similarities in cloud type classification, the decorrelation length 
scale ranges from 0.04 km for cirrostratus/anvil paired with cirrus to 4.47 km 
for cirrostratus/anvil and cirrus paired with cirrostratus/anvil and cirrus. The 
large spread in the decorrelation length scale among the cirrus and cirrostra-
tus/anvil combinations separate into two groups according to if cirrostratus/
anvil is present in the upper cloud layer considered or not. If only cirrus clouds 
are in the upper cloud layer, the decorrelation length scale is small (0.04 or 
0.67 km). In contrast, if cirrostratus/anvil is present in the upper cloud layer 
considered, the decorrelation length scale is larger (2.96 or 4.47 km).

Figure 5. The mean overlap parameter (⍺) for each layer separation (Δz; km) for vertically continuous clouds at the 
Atmospheric Radiation Measurement Program Southern Great Plains site. The observations are separated by cloud types with 
the most frequent cloud regimes shown. The cloud types for each regime are given for the lower (1) and upper cloud layers 
(2). The decorrelation length scale (km) and the 1-σ error for each cloud regime is given in the parentheses. The standard 
error of the mean ⍺ is denoted by the horizontal lines.

Table 2 
The Number of Samples for the 10 Most Frequent Cloud Type Pairs (Top 
Right) and the Cloud Height Classification Pairs (Bottom Right)

Cloud type

Number of samplesLower cloud layer Upper cloud layer

Cirrus Cirrus 222,020

Altocumulus Cirrus 34,841

Low cloud Cirrus 28,692

Low cloud Low cloud 22,547

Altocumulus Altocumulus 15,436

Cirrostratus/anvil, cirrus Cirrus 14,294

Cirrostratus/anvil Cirrus 12,688

Cirrostratus/anvil, cirrus Cirrostratus/anvil, cirrus 11,426

Cirrostratus/anvil Cirrostratus/anvil, cirrus 11,087

Congestus Cirrus 7,910

Cloud height classification

Lower cloud layer Upper cloud layer Number of samples

High-level cloud High-level cloud 271,288

Mid-level cloud High-level cloud 104,987

Low-level cloud High-level cloud 79,123

Low-level cloud Low-level cloud 54,263

Low-level cloud Mid-level cloud 46,271

Mid-level cloud Mid-level cloud 37,867

Note. The cloud types and cloud height classification for each regime are 
given for the lower (left) and upper cloud layers (middle).
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We also consider the decorrelation length scale for cloud type pairs that are comprised of a single cloud type, 
for example, low cloud paired with low cloud. Several single cloud type pairs are already found in Figure 5 as 
part of the top 10 most frequent cloud type pairs. In addition to those in Figure 5, congestus, deep convection, 
altostratus, and cirrostratus/anvil single cloud type pairs are investigated and found to have decorrelation length 
scales of 9.22, 18.09, 2.66, and 3.95 km, respectively. Similar to all cloud type pairs, cirrus paired with cirrus 
has the smallest decorrelation length scale. The largest decorrelation length scale is deep convection paired with 
deep convection as expected due to their association with atmospheric instability that supports vertical growth 
and ultimately maximum overlap.

5.1.2. SGP Decorrelation Length Scales by Cloud Layer Height Classification

The α and decorrelation length scale values are also separated into cloud layer height classification. The cloud 
layers are classified as low-level (height <3.5 km), mid-level (3.5 km < height < 6.5 km), or high-level clouds 
(height > 6.5 km), which is based on the cloud type classification criteria used in Lim et al. (2019) (see their Table 
1). The mean α for each layer separation for the cloud layer height classification pairs are shown in Figure 6. The 
decorrelation length scale for each cloud layer height classification pair is also found following Equation 5. The 
number of samples for the cloud layer height classification pairs are provided in Table 2.

Similar to Figures 4 and 5, the mean ⍺ values are near 0.90 for the smallest layer separation of 360 m for nearly 
all cloud layer height classifications in Figure 6. The only exception is the low-level cloud paired with high-level 
cloud pair in which the smallest layer separation is 3 km. The high-level paired with high-level cloud pair is the 
most frequent cloud layer height classification and also decreases toward mean ⍺ values of 0 at smaller layer sepa-
rations than compared to other cloud layer height classification pairs. This is also noted in the high-level paired 
with high-level cloud pair decorrelation length scale, which is 1.41 km and the smallest decorrelation length 
scale value when considering height classification. The high-level paired with high-level cloud pair decorrelation 
length scale value is similar to that for cirrus paired with cirrus. This is due to the height classification criteria 
being based on the cloud type classification and, therefore, a large overlap in samples between cirrus paired with 
cirrus and high-level paired with high-level.

The largest decorrelation length scale by cloud height classification is 5.08 km for low-level cloud paired with 
low-level cloud. The decorrelation length scale value is considerably larger than the low cloud paired with 
low cloud value in Section 5.1.1, which is due to other cloud type classifications being considered when only 

Figure 6. The mean overlap parameter (⍺) for each layer separation (Δz; km) for vertically continuous clouds at the 
Atmospheric Radiation Measurement Program Southern Great Plains site separated by cloud layer height into low-level, 
mid-level, and high-level clouds. The cloud layer height classifications are given for the lower (1) and upper cloud layers 
(2). The decorrelation length scale (km) and the 1-σ error for each cloud layer height classification pair is given in the 
parentheses. The standard error of the mean ⍺ is denoted by the horizontal lines.
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considering cloud height classification. For example, congestus and deep convection cloud types are included 
when considering low-level clouds as cloud heights below 3.5  km. These cloud types are often associated 
with atmospheric instability favoring vertical motion that tend to be more maximally vertically overlapped (Li 
et al., 2019) compared to other cloud types, therefore, increasing the decorrelation length scale. The decorrelation 
length scale value for the low-level cloud paired with low-level cloud may be larger than the high-level cloud 
paired with high-level cloud as a result of this as well as stronger upper-level horizontal winds that may spread 
out the cloud horizontally rather than vertically.

5.1.3. SGP Shallow Cumulus Decorrelation Length Scales

Cloud vertical overlap observations are also considered for periods of shallow cumulus clouds. The shallow 
cumulus time periods are from the SHALLOWCUMULUS data product (Section  2). While the focus is on 
the occurrence of shallow cumulus clouds (i.e., low clouds) during these time periods, other cloud types that 
occur are also considered, which include cirrus and altocumulus. The methods applied are the same as those in 
Section 3 except the 1 hr periods considered are centered on the hour mark to follow the SHALLOWCUMULUS 
data product time bounds considered, for example, 0:30 to 1:30. The other analysis presented start at the hour 
mark, for example, 0:00 to 1:00.

The mean ⍺ for each layer separation for clouds during shallow cumulus identified times are shown in Figure 7. 
The decorrelation length scale considering shallow cumulus identified times is also found following Equation 5 
by considering the mean ⍺ values. The resultant decorrelation length scale is 0.80 ± 0.09 km, which is consid-
erably smaller than that considering all clouds (i.e., 1.84 km; Figure 4). The median ⍺ at a layer separation of 
360 m is 1, which indicates that a majority of the clouds analyzed are maximally overlapped. The mean ⍺ at 
a layer separation of 360 m is 0.73, which indicates that the minority of clouds that diverge from maximum 
overlap have smaller ⍺ values closer to random overlap instead of ⍺ values near 1 and maximum overlap. This 
is further seen in the 25th percentile, which is 0.57 at a layer separation of 360 m. At layer separations of 1 km 
and greater, the mean ⍺ is greater than the median ⍺. This suggests the opposite seen for layer separations below 
1 km such that the majority of clouds analyzed have an ⍺ near 0 corresponding to random overlap, while the 
minority  tend  toward maximum overlap. This is further supported by the 75th percentile, which is 1.0 at a layer 
separation of 1.08 km.

The cloud type classifications are also considered for the shallow cumulus time periods and shown in Figure 7. At 
the smallest and largest layer separations, low cloud paired with low cloud have the largest mean ⍺ values. Low 

Figure 7. The mean (black) and median (orange) overlap parameter (α) for each layer separation (Δz; km) for vertically 
continuous clouds during identified shallow cumulus times at the ARM SGP site. The mean α observations separated by 
cloud types are also shown. The cloud types for each regime are given for the lower (1) and upper cloud layers (2). The ⍺ 
values corresponding to a decorrelation length scale of 0.80 km that is based on fitting the mean ⍺ observations to Equation 5 
are shown in red. The standard error of the mean ⍺ is denoted by the black horizontal lines.
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cloud paired with altocumulus have the largest mean ⍺ value at medium layer separations (e.g., 1.08 km), which 
is in contrast to smaller and larger layer separations when the low cloud paired with altocumulus mean ⍺ values 
are typically smaller than other regimes. In general, cirrus paired with cirrus mean ⍺ values are smaller compared 
to the other cloud type pairs. This indicates the values are closer to random overlap than other cloud type pairs, 
which is also seen in Figure 5 when considering all times instead of shallow cumulus periods only. The largest 
mean ⍺ values for a cloud type pair are from the altocumulus paired with altocumulus cloud type pair, which is 
0.92 and 1.0 at layer separations of 360 and 720 m. The large ⍺ values indicate altocumulus paired with altocumu-
lus correspond well to maximum overlap. There are no continuous cloud layer pairs considered for altocumulus 
paired with altocumulus for layer separation of 1 km and greater, which is partially due to the fact that the cloud 
thickness of altocumulus is defined as less than 1.5 km in Lim et al. (2019).

The observationally derived decorrelation length scale in this study is larger than other studies that analyzed 
shallow cumulus from Large-Eddy Simulations (LES). For example, Neggers et al.  (2011) found the shallow 
cumulus decorrelation length scale to be 200–300  m. We have also investigated applying our cloud vertical 
overlap methods to LES output for LES ARM Symbiotic Simulation and Observation (LASSO) cases (Gustafson 
et al., 2020) with shallow cumulus clouds. The LASSO case considered here is the 22 May 2018 case, which 
included shallow cumulus clouds and a maximum cloud top height of 4.275 km. The decorrelation length scale 
value is found to be 0.54 km. Our initial analysis also suggests that the decorrelation length scale is smaller for 
LES than those presented here based on shallow cumulus observations. It is our future research goal to investigate 
these differences further, including more cases that sample other shallow cumulus cases modeled.

5.2. Global Decorrelation Length Scales

The previous sections focused on results from the SGP site. In this section, the methodology is expanded to other 
long-term and short-term ARM sites where the CLDTYPE and ARSCL data product is available. The cloud 
vertical overlap characteristics are again calculated from observations of cloud vertical profiles and separated by 
cloud type where available.

The decorrelation length scale is found by fitting the α observations to Equation 5 for each site. A map with 
the decorrelation length scale value for each site is shown in Figure 8. The decorrelation length scale values for 
each site are also provided in Table 1. The smallest decorrelation length scale is 1.03 km in the Arctic as part of 
the Multidisciplinary Drifting Observatory for the Study of Arctic Climate (MOSAiC) field campaign (Shupe 
et al., 2022). The largest decorrelation length scale is 3.06 km in Manacapuru, Brazil as part of the Green Ocean 
Amazon (GoAmazon) field campaign (Martin et al., 2017).

The decorrelation length scale values are generally larger near the equator and decrease poleward in Figure 8, 
which has been noted previously (e.g., Oreopoulos et al., 2012; Shonk et al., 2010). However, this is not exhibited 
at all sites in Figure 8. For example, the decorrelation length scale at Ascension Island (ASI) in the South Atlantic 

Figure 8. A map of the decorrelation length scale (km) that fits observations at all Atmospheric Radiation Measurement Program (ARM) sites considered. Lighter 
shades of red correspond to smaller decorrelation length scales and darker shades correspond to larger decorrelation scales. The values are labeled next to each site's 
latitude and longitude as well as in the legend (with 1-σ errors) and included in Table 1.
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Ocean and Gan Island (GAN) in the Maldives are 1.39 and 1.43 km, respectively, despite a similar latitude to the 
site in Manacapuru, Brazil (MAO) where the decorrelation length scale is twice in magnitude. The differences 
between ASI and GAN compared to MAO may be related to ocean-based sites compared to land-based sites. 
This difference has been noted in a global satellite-based study by Li et al. (2015), where they found that larger 
overlap values were found for land-based locations than for ocean-based locations. The larger overlap values 
for land-based compared to ocean-based may be due to typically larger land surface fluxes (Li et  al., 2015), 
which may enhance instability and lead to increased vertical motion and hence increased vertical alignment 
over land as compared to over ocean. Besides MAO and TWPC3 in Darwin, Australia for 1 July to 1 January, 
the decorrelation length scale values for the tropical sites are smaller than those in Oreopoulos et  al.  (2012) 
by more than 1 km. The parameterization in Oreopoulos et  al.  (2012) is closer to the values in Figure 8 for 
the midlatitude and high-latitudes sites with all other sites within 0.5 km. However, the minimum value in the 
latitude-dependent decorrelation length scale parameterization in Oreopoulos et  al.  (2012) is 1.43 km, which 
is larger than half of the sites examined in this study. The decorrelation length scale values in Figure 8 are also 
compared to the absolute latitude parameterization in Shonk et al. (2010). In general, the decorrelation length 
scale in Figure 8 exhibited a smaller change with latitude. The midlatitude sites compare well but tropical sites are 
smaller and high-latitude sites are larger than the Shonk et al. (2010) parameterization. Similar to the comparison 
with Oreopoulos et al. (2012), the decorrelation length scale values agree within ∼0.5 km besides several of the 
tropical sites including the TWP sites and the GAN site.

5.2.1. Global Decorrelation Length Scales by Cloud Types

In Section 5.1.1, the decorrelation length scale by cloud regime is shown for the SGP site. In this section, we 
find the decorrelation length scale for the same cloud regimes at other sites where the CLDTYPE data product is 
available, which includes the TWPC1, TWPC2, TWPC3, and COR sites. The decorrelation length scale values 
by cloud regime for each site considered are shown in Figure 9.

The cloud regimes correspond to those that were most frequent at the SGP site; however, the most frequent cloud 
regimes are different at each site due to differences in each location's cloud climatologies. We consider the same 
as those at the SGP site in order to compare and contrast how the decorrelation length scale changes across sites 
for the same cloud regimes.

There are several similarities in the decorrelation length scale value for a given cloud regime across the five 
different sites. For example, the decorrelation length scale values for the cirrus paired with cirrus cloud regime 
only ranges from 1.36 km at the SGP site in the continental midlatitudes to 1.66 km at the TWPC2 site located 
on an island near the equator. The similarities in the decorrelation length scale across different sites for the same 
cloud regime indicates that cloud regime information could help inform the decorrelation length scale to use 
within models that specify a decorrelation length scale.

Figure 9. A chart of the decorrelation length scale (km) that fits observations by site (columns) and by cloud regime (rows) with 1-σ errors also shown. The sites 
include the SGP (left), TWPC1 (second from left), TWPC2 (middle), TWPC3 (second from right), and Cordoba, Argentina (COR) (right) sites. The cloud types for 
each regime are given for the lower (1) and upper cloud layers (2) to the left of the chart. Lighter shades of red correspond to smaller decorrelation length scales and 
darker shades correspond to larger decorrelation scales. Decorrelation length scale values for cloud regimes at sites with large errors are not shown and instead denoted 
with a dash.
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In contrast, several cloud regimes show distinct differences including the congestus paired with cirrus cloud type 
pair. The decorrelation length scale value is greater than 1 km for the SGP, TWPC3, and COR sites, while the 
values are 0.1–0.4 km for the TWPC1 and TWPC2 sites. The former values indicate a larger layer separation 
before the transition to random overlap, while the latter suggest a transition to random overlap at only a couple 
hundred meters. The differences could be related to synoptic forcings playing a role as the formation of congestus 
and the formation of cirrus vary from site to site. Another possible difference could be due to the decorrelation 
length scale methodology not capturing the variation of α with layer separation for cloud type pairs that often 
have large layer separation, for example, congestus paired with high cloud. While the similarities in Figure 9 are 
encouraging, the differences in the decorrelation length scale across difference sites for the same cloud regime 
recommends caution should be used when considering global application of regime-specific decorrelation length 
scales for several of the cloud regimes.

6. Summary
Cloud vertical overlap characteristics are derived at the ARM SGP site from nearly 25 years of ground-based 
observations. Cloud vertical overlap characteristics are also derived from observations at other long-term ARM 
deployments including the TWP, North Slope of Alaska, and Eastern North Atlantic sites as well as other short-
term field deployments across the globe. The cloud vertical overlap characteristics are derived from vertical 
profiles of clouds from the CLDTYPE and ARCL data products, which utilize radar and lidar observations from 
the MMCR, KAZR, WACR, and MPL.

The cloud vertical overlap observations are utilized to derive the decorrelation length scale. At the SGP site, the 
decorrelation length scale that fits observations is 1.84 km. Globally, the decorrelation length scale value ranged 
from 1.03 km in the Arctic to 3.06 km in Brazil.

The decorrelation length scale is also considered by cloud type classification. At the SGP site, the cloud type clas-
sified decorrelation length scale ranged from 0.04 km for cirrostratus paired with cirrus to 4.58 km for low cloud 
paired with cirrus. The decorrelation length scale is derived for shallow cumulus periods, which is found to be 
0.80 km. The observationally derived decorrelation length scale presented in this study is larger than values from 
LES models suggest (on the order of a few 100s of meters). The discrepancy between observationally derived and 
LES-derived shallow cumulus decorrelation length scale is a finding we intend to investigate further in future 
research. The decorrelation length scale is also considered by height level classification at the SGP site. The 
decorrelation length scale value ranged from 1.41 km for high-level paired with high-level cloud pair to 5.08 km 
for low-level paired with low-level cloud pair.

The decorrelation length scale by cloud type classification is considered for other sites to assess how it varies 
by location for the same cloud regimes. The decorrelation length scale by cloud regime exhibited similarities 
(e.g., cirrus paired with cirrus) and differences (e.g., congestus paired with cirrus) when considering different 
locations globally. The similarities among cloud regime-specific cloud vertical overlap characteristics despite 
different climatologies and specifically cloud climatologies is encouraging that cloud regime can help inform 
decorrelation length scales when developing operational forecast models. However, the differences call for 
caution for several cloud regimes in which more information (e.g., wind shear and atmospheric stability) may 
be necessary to determine the decorrelation length scale and ultimately model a representative cloud-radiation 
interaction.

This study investigates how cloud vertical overlap observations varied by site, season, and cloud regime to inform 
model assumptions of subgrid-scale clouds. To understand how to implement these results, testing within a 
numerical weather prediction model set up could help identify the forecast utility. One way to investigate this is 
to adjust the cloud vertical overlap inputs and evaluate the modeled values against observations, such as with the 
surface radiative fluxes at the ARM sites included in this study. In addition to testing, several factors would need 
to be addressed. First, the applicability of the observed cloud type decorrelation length scale requires identifying 
comparable cloud types between the model and observations. In addition, the variability in the decorrelation 
length scale by cloud type could be implemented into a numerical model with a reliable cloud type diagnostic. 
The cloud height classification decorrelation length scale results could provide additional information to the 
model assumptions for subgrid-scale clouds that could avoid cloud type classification differences between obser-
vations and models.
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Long-term ground-based observations from point-locations provide the opportunity to derive cloud vertical over-
lap characteristics and test cloud vertical overlap assumptions. Cloud vertical overlap assumptions are utilized by 
numerical weather prediction models to represent subgrid-scale clouds. This study derives cloud vertical overlap 
characteristics for all clouds and by cloud regimes that could potentially be implemented into numerical weather 
prediction models. By improving the representation of subgrid-scale clouds and their interaction with radiation 
within operational models, this could potentially improve prediction of radiative fluxes for weather, climate, and 
renewable energy forecasting.

Data Availability Statement
Data can be downloaded from the ARM data archive for the CLDTYPE (http://dx.doi.org/10.5439/1349884), 
KAZR ARSCL (http://dx.doi.org/10.5439/1393437), WACR ARSCL (http://dx.doi.org/10.5439/1097547), and 
SHALLOWCUMULUS (http://dx.doi.org/10.5439/1392569) VAPs.
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